Skip to article frontmatterSkip to article content

Задание 4а

Область симметрична по всем осям

 ⁣[0,1]nx12++xn2dx1dx2dxn= ⁣[0,1]nx12dx1dx2dxn++ ⁣[0,1]nxn2dx1dx2dxn=n ⁣[0,1]nx12dx1dx2dxn=n ⁣n1x13301dx2dxn=n ⁣n113dx2dxn=13n ⁣n11dx2dxn1=13n\begin{align*}&\underset{[0,1]^n}{\iiint\dots\int}x_1^2+\dots+x_n^2\d x_1\d x_2\dots\d x_n=\\&\underset{[0,1]^n}{\iiint\dots\int}x^2_1\d x_1\d x_2\dots\d x_n+\dots+\underset{[0,1]^n}{\iiint\dots\int}x_n^2\d x_1\d x_2\dots\d x_n=\\ &n\underset{[0,1]^n}{\iiint\dots\int}x_1^2\d x_1\d x_2\dots\d x_n=\\ &n\underset{n-1}{\iiint\dots\int}\frac{x_1^3}{3}\biggm|^1_0\d x_2\dots\d x_n=\\ &n\underset{n-1}{\iiint\dots\int}\frac{1}{3}\d x_2\dots\d x_n=\\ &\frac{1}{3}n\underbrace{\underset{n-1}{\iiint\dots\int}1\d x_2\dots\d x_n}_{1}=\frac{1}{3}n\\ \end{align*}

Задание 4б

 ⁣[0,1]n(x1++xn)2dx1dx2dxn\begin{align*} \underset{[0,1]^n}{\iiint\dots\int}(x_1+\ldots+x_n)^2\d x_1\d x_2\dots\d x_n \end{align*}